Allyl C-Glycosidation of Glycals Mediated by 2,3-Dichloro-5,6-dicyano-p-benzoquinone (DDQ)

Kazunobu TOSHIMA,* Toru ISHIZUKA, Goh MATSUO, and Masaya NAKATA

Department of Applied Chemistry, Faculty of Science and Technology,

Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223

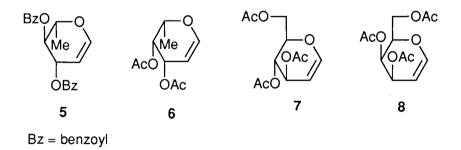
A novel and highly stereoselective method for the synthesis of allyl C-glycosides bearing C_2 - C_3 unsaturation has been developed using glycal acetate, allyltrimethylsilane and 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ) as a neutral activator.

Allyl C-glycosides are undoubtedly very versatile synthetic intermediates for natural product syntheses. ¹⁾ Also, carbon-linked glycosides, stable analogues of naturally occurring O- and N-glycosides, have become the subject of considerable interest in both bioorganic chemistry and medicinal chemistry. ²⁾ Danishefsky $et\ al.^3$) and Isobe $et\ al.^4$) independently reported an effective route to the C_1 -allylated glycosides having C_2 - C_3 unsaturation from glycal acetates and allyltrimethylsilane [(3-propenyl)trimethylsilane]. A strong Lewis acid such as TiCl₄ or BF_3 •Et₂O was used as the effective promoter in their methods. Therefore, development of a neutral alternative would extend the scope of the useful allyl C-glycosidation reaction. Very recently, 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ), which is well known as a neutral oxidative reagent, was found to be an effective O-glycosidation promoter of 3,4-dimethoxybenzyl glycosides as glycosyl donors by Inanaga $et\ al.^5$) We also announced the novel O-glycosidation of glycals promoted by DDQ. In our extended studies of this project, we have utilized such properties of DDQ in C-glycosidation reaction. In this letter, we report a novel and highly stereoselective protocol for the synthesis of 2,3-unsaturated allyl α -C-glycosides using glycal acetates, allyltrimethylsilane and DDQ as a neutral activator.

We first examined the *C*-glycosidations of 3,4-di-*O*-acetyl-L-rhamnal (1) with allyltrimethylsilane (2) using various amounts of DDQ in MeCN at 50 °C.⁷⁾ These results are summarized in Table 1. Although this glycosidation reaction proceeded even with 10 mol% of DDQ, a long reaction time was required to get a high yield of the allyl *C*-glycoside 3 (entries 1 and 2). On the other hand, excess amounts of DDQ caused a significant

Table 1. Glycosidations of 1 with allyltrimethylsilane 2 by DDQ a)

Entry	Mol% of DDQ	t/h	Yield / % ^{b)}
1	10	12	63
2	10	36	83
3	30	12	80
4	30	24	86
5	50	12	90
6	70	12	77
7	100	12	67
8	150	12	31


- a) All reactions were carried out by use of 1.5 equiv. of 2 to 1.
- b) Isolated yields after purification by column chromatography.

decrease in the yield of the desired glycoside 3 because the allylic rearrangement of the C_3 -O-acetyl group took place predominantly to give the 1-O-acetyl-2,3-unsaturated glycoside 4 (entry 8). Therefore, the use of 30-50 mol% of DDQ was most effective for performing the glycosidation reaction when considering the reaction time and temperature and yield. Indeed, the allyl C-glycoside 3 was obtained in high yield after 12 h at 50 °C (entries 3 and 5). Our attention next turned to the effect of the allyl species in this reaction and the glycosidation of 1 with another typical allyl species, allyltributyltin (5) (1.5 equiv.), was investigated. Although the reaction also

Table 2. Glycosidations of several glycals with 2 by DDQ a)

Entry	Glycal	Mol% of DDQ	T/°C	t/h	Yield / % ^{b)}	α/β Ratio ^{c)}
1	1	50	50	12	90	15/1
2	5	50	70	48	77	10/1
3	6	50	70	48	74	>99/1
4	7	50	50	48	85	16/1
5	8	50	70	48	76	>99/1

- a) All reactions were carried out by use of 1.5 equiv. of 2 to the glycal.
- b) Isolated yields after purification by column chromatography.
- c) α/β Ratios were determined by ¹H-NMR (270 MHz) spectroscopy.

proceeded under similar conditions and the allyl C-glycoside 3 was obtained in moderate yield, the glycosidation was much less effective than that with allyltrimethylsilane (2).

Finally, the glycosidations of other typical acylated glycals **5-8** with **2** mediated by DDQ were examined. The results summarized in Table 2 showed that these glycosidations proceeded under similar conditions to afford the corresponding allyl *C*-glycosides⁸⁾ in high yields. The comparison of entry 1 with entry 2 in Table 2 indicated that the glycosidation of a glycal acetate was more effective than that of the corresponding benzoate. Notably,

the stereoselectivies of these glycosidation reactions were highly α -selective in all cases.⁹⁾ Since the configuration of the anomeric position was not isomerized by exposure of the single α -anomer of 3 to the reaction conditions, the high α -stereoselectivity must arise from the kinetic anomeric effect.¹⁰⁾

In conclusion, although the efficiency of this glycosidation was limited by the long reaction time, the present protocol offers a new method for the *C*-glycosidation of glycals under neutral conditions. Details of the present glycosidation mechanism are now under investigation.

References

- K. C. Nicolaou, M. E. Duggan, C-K. Hwang, and P. K. Somers, J. Chem. Soc., Chem. Commun.,
 1985, 1359; F. E. Wincott, S. J. Danishefsky, and G. Schulte, Tetrahedron Lett., 28, 4951 (1987); S. J. Danishefsky, S. DeNinno, and P. Lartey, J. Am. Chem. Soc., 109, 2082 (1987); Y. Ichikawa, M. Isobe, and T. Goto, Tetrahedron, 43, 4749 (1987).
- 2) U. Hacksell and G. D. Daves, Jr., Prog. Med. Chem., 22, 1 (1985).
- 3) S. Danishefsky and J. F. Kerwin, Jr., J. Org. Chem., 47, 3803 (1982).
- 4) Y. Ichikawa, M. Isobe, M. Konobe, and T. Goto, Carbohydr. Res., 171, 193 (1987).
- 5) J. Inanaga, Y. Yokoyama, and T. Hanamoto, Chem. Lett., 1993, 85.
- 6) K. Toshima, T. Ishizuka, G. Matsuo, M. Nakata, and M. Kinoshita, J. Chem. Soc., Chem. Commun., 1993, 704.
- 7) In our previous *O*-glycosylation study of glycal by DDQ, it was found that MeCN was the best solvent and a suitable temperature was 50 °C for the reaction, see Ref. 6.
- 8) All compounds were purified by silica-gel column chromatography and were fully characterized by spectroscopic means.
- 9) The stereochemistry of the anomeric center was determined by ¹H NOE experiments, see Refs. 3 and 4 for enrties 4 and 5. In the case of the major products in entries 1-3, a clear NOE effect was observed with ~3.5% enhancement between the H-1 signal and the H-6 (methyl) signal; M. Brakta, R. N. Farr, B. Chaguir, G. Massiot, C. Lavaud, W. R. Anderson, Jr., D. Sinou, and G. D. Daves, Jr., *J. Org. Chem.*, 58, 2992 (1993).
- M. D. Lewis, J. K. Cha, and Y. Kishi, J. Am Chem. Soc., 104, 4976 (1982); S. A. Babirad, Y. Wang,
 Y. Kishi, J. Org. Chem., 52, 1370 (1987).

(Received August 12, 1993)